RNA-seq analysis of galaninergic neurons from ventrolateral preoptic nucleus identifies expression changes between sleep and wake

BMC Genomics. 2020 Sep 14;21(1):633. doi: 10.1186/s12864-020-07050-7.

Abstract

Background: Previous studies show that galanin neurons in ventrolateral preoptic nucleus (VLPO-Gal) are essential for sleep regulation. Here, we explored the transcriptional regulation of the VLPO-Gal neurons in sleep by comparing their transcriptional responses between sleeping mice and those kept awake, sacrificed at the same diurnal time.

Results: RNA-sequencing (RNA-seq) analysis was performed on eGFP(+) galanin neurons isolated using laser captured microdissection (LCM) from VLPO. Expression of Gal was assessed in our LCM eGFP(+) neurons via real time qPCR and showed marked enrichment when compared to LCM eGFP(-) cells and to bulk VLPO samples. Gene set enrichment analysis utilizing data from a recent single-cell RNA-seq study of the preoptic area demonstrated that our VLPO-Gal samples were highly enriched with galanin-expressing inhibitory neurons, but not galanin-expressing excitatory neurons. A total of 263 genes were differentially expressed between sleep and wake in VLPO-Gal neurons. When comparing differentially expressed genes in VLPO-Gal neurons to differentially expressed genes in a wake-active neuronal region (the medial prefrontal cortex), evidence indicates that both systemic and cell-specific mechanisms contribute to the transcriptional regulation in VLPO-Gal neurons. In both wake-active and sleep-active neurons, ER stress pathways are activated by wake and cold-inducible RNA-binding proteins are activated by sleep. In contrast, expression of DNA repair genes is increased in VLPO-Gal during wakefulness, but increased in wake-active cells during sleep.

Conclusion: Our study identified transcriptomic responses of the galanin neurons in the ventrolateral preoptic nucleus during sleep and sleep deprivation. Data indicate that VLPO contains mainly sleep-active inhibitory galaninergic neurons. The VLPO galanin neurons show responses to sleep and wake similar to wake-active regions, indicating these responses, such as ER stress and cold-inducible RNA-binding proteins, are systemic affecting all neuronal populations. Region-specific differences in sleep/wake responses were also identified, in particular DNA repair. Our study expands knowledge about the transcriptional response of a distinct group of neurons essential for sleep.

Keywords: Galaninergic neurons; Next-generation RNA-sequencing; Sleep deprivation; Spontaneous sleep; Ventrolateral preoptic nucleus.

MeSH terms

  • Animals
  • Galanin / genetics
  • Galanin / metabolism*
  • Male
  • Mice
  • Neurons / metabolism
  • Preoptic Area / cytology
  • Preoptic Area / metabolism*
  • Sleep Deprivation / genetics*
  • Sleep Deprivation / metabolism
  • Sleep*
  • Transcriptome*
  • Wakefulness

Substances

  • Galanin