Induction Heating in Nanoparticle Impregnated Zeolite

Materials (Basel). 2020 Sep 10;13(18):4013. doi: 10.3390/ma13184013.

Abstract

The ultra-stable Y (H-USY) zeolite is used as catalyst for the conversion of plastic feedstocks into high added value products through catalytic cracking technologies. However, the energy requirements associated with these processes are still high. On the other hand, induction heating by magnetic nanoparticles has been exploited for different applications such as cancer treatment by magnetic hyperthermia, improving of water electrolysis and many other heterogeneous catalytic processes. In this work, the heating efficiency of γ-Fe2O3 nanoparticle impregnated zeolites is investigated in order to determine the potential application of this system in catalytic reactions promoted by acid catalyst centers under inductive heating. The γ-Fe2O3 nanoparticle impregnated zeolite has been investigated by X-ray diffraction, electron microscopy, ammonia temperature program desorption (NH3-TPD), H2 absorption, thermogravimetry and dc and ac-magnetometry. It is observed that the diffusion of the magnetic nanoparticles in the pores of the zeolite is possible due to a combined micro and mesoporous structure and, even when fixed in a solid matrix, they are capable of releasing heat as efficiently as in a colloidal suspension. This opens up the possibility of exploring the application at higher temperatures.

Keywords: catalytic cracking; induction heating; magnetic nanoparticles; zeolite.