Fermentation Dynamics and Benzylic Derivative Production in Ischnoderma resinosum Isolates

ACS Omega. 2020 Aug 24;5(35):22268-22277. doi: 10.1021/acsomega.0c02550. eCollection 2020 Sep 8.

Abstract

Fermentation dynamics and benzylic derivative production were evaluated in the fermentation broth of six different Ischnoderma resinosum (P. Karst) isolates over a period of 30 days to understand their potential applications in bioreactor optimization for natural flavor compound production. d-Glucose and d-fructose levels decreased from 20.4 ± 0.4 to 7.1 ± 1.4 g/L and 1.0 ± 0.1 to <0.1 g/L, respectively, in all fermentations. Isolate I2 produced the highest concentration of ethanol (546. 4 ± 0.4 mg/L). l-Lactic acid production varied between 4.3 ± 0.6 and 3.7 ± 0.2 mg/L, whereas acetic acid concentrations decreased from 81.0 ± 3.3 to <40.0 mg/L. pH decreased from 4.9 ± 0.0 to 3.6 ± 0.4 at the end of 30 days in all fermentations. Isolate I3 was the highest producer of benzaldehyde (BA) (12.0 ± 0.2 mg/kg) and 4-methoxybenzaldehyde (4-MBA) (239.6 ± 3.9 mg/kg), while isolate I4 was the highest producer of 3,4-dimethoxybenzaldehyde (3,4-DMBA) (27.8 ± 0.2 mg/18 kg). Identification of isolate I3 as a high BA and 4-MBA producer and isolate I4 as a high 3,4-DMBA producer suggested differential benzylic derivative production among I. resinosum isolates. This study lays the foundation for future investigations evaluating additional I. resinosum isolates for benzylic derivative production as well as studies aimed at bioreactor optimization with potential commercial application.