Multifocal structured illumination optoacoustic microscopy

Light Sci Appl. 2020 Aug 31:9:152. doi: 10.1038/s41377-020-00390-9. eCollection 2020.

Abstract

Optoacoustic (OA) imaging has the capacity to effectively bridge the gap between macroscopic and microscopic realms in biological imaging. High-resolution OA microscopy has so far been performed via point-by-point scanning with a focused laser beam, thus greatly restricting the achievable imaging speed and/or field of view. Herein we introduce multifocal structured illumination OA microscopy (MSIOAM) that attains real-time 3D imaging speeds. For this purpose, the excitation laser beam is shaped to a grid of focused spots at the tissue surface by means of a beamsplitting diffraction grating and a condenser and is then scanned with an acousto-optic deflector operating at kHz rates. In both phantom and in vivo mouse experiments, a 10 mm wide volumetric field of view was imaged with 15 Hz frame rate at 28 μm spatial resolution. The proposed method is expected to greatly aid in biological investigations of dynamic functional, kinetic, and metabolic processes across multiple scales.

Keywords: Imaging and sensing; Microscopy.