Does the Grip Width Affect the Bench Press Performance of Paralympic Powerlifters?

Int J Sports Physiol Perform. 2020 Sep 11;15(9):1252-1259. doi: 10.1123/ijspp.2019-0784. Print 2020 Oct 1.

Abstract

Purpose: To verify the effects of using different grip widths in bench press performance in Paralympic powerlifting athletes.

Methods: Twelve experienced Paralympic powerlifting male athletes (25.40 [3.30] y, 70.30 [12.15] kg) participated in the study. Maximal dynamic strength and maximal isometric strength (MIS) were determined. Then, mean propulsive velocity (MPV) using 25%, 50%, and 100% of maximal dynamic strength load and time to achieve 30%, 50%, and 100% of MIS were assessed with 4 different grip widths, specifically the biacromial distance (BAD: 42.83 [12.84] cm), 1.3 BAD (55.68 [16.70] cm), 1.5 BAD (63.20 [18.96] cm), and 81 cm. Electromyographic analysis was performed during MIS assessment in the pectoralis major sternal portion, anterior deltoid, triceps brachii long head, and pectoralis major clavicular portion.

Results: Large differences were found between MPV performed with different grip widths using 25% of maximal dynamic strength load (P = .02, ηp2=.26). The 1.5 BAD grip tended to show greater force generation and MPV. Moreover, the time needed to achieve 30%, 50%, and 100% of MIS differed between grip widths (P = .03, ηp2=.24), with the lowest values obtained in the 1.5 BAD. Despite the nonstatistical differences that were found, grip widths caused moderate effects on muscle myoelectric activation, showing greater values for pectoralis major clavicular portion and pectoralis major sternal portion, for the 1.3 BAD and 1.5 BAD, respectively. The 1.5 BAD the grip width tended to show greater MPV values and faster contractile responses.

Conclusions: These results highlighted the importance of choosing the specific grip width for improvement of performance in Paralympic powerlifting athletes, by increasing velocity of movement and force production in a shorter time, with greater activation of primary muscles.

Keywords: bar velocity; dynamic strength; electromyography; isometric strength; powerlifting.