Intrinsic Heart Regeneration in Adult Vertebrates May be Strictly Limited to Low-Metabolic Ectotherms

Bioessays. 2020 Nov;42(11):e2000054. doi: 10.1002/bies.202000054. Epub 2020 Sep 11.

Abstract

The heart has a high-metabolic rate, and its "around-the-clock" vital role to sustain life sets it apart in a regenerative setting from other organs and appendages. The landscape of vertebrate species known to perform intrinsic heart regeneration is strongly biased toward ectotherms-for example, fish, salamanders, and embryonic/neonatal ectothermic mammals. It is hypothesized that intrinsic heart regeneration is exclusively limited to the low-metabolic hearts of ectotherms. The biomedical field of regenerative medicine seeks to devise biologically inspired regenerative therapies to diseased human hearts. Falsification of the ectothermy dependency for heart regeneration hypothesis may be a crucial prerequisite to meaningfully seek inspiration in established ectothermic regenerative animal models. Otherwise, engineering approaches to construct artificial heart components may constitute a more viable path toward regenerative therapies. A more strict definition of regenerative phenomena is generated and several testable sub-hypotheses and experimental avenues are put forward to elucidate the link between heart regeneration and metabolism. Also see the video abstract here https://youtu.be/fZcanaOT5z8.

Keywords: axolotl; comparative physiology; ectotherm; endotherm; heart regeneration; metabolism; zebrafish.

Publication types

  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Adult
  • Animals
  • Heart*
  • Humans
  • Mammals
  • Models, Animal
  • Regenerative Medicine
  • Vertebrates*