Reconfigurable multiphoton entangled states based on quantum photonic chips

Opt Express. 2020 Aug 31;28(18):26792-26806. doi: 10.1364/OE.402383.

Abstract

Multipartite entanglement is one of the most prominent features of quantum mechanics and is the key ingredient in quantum information processing. Seeking for an advantageous way to generate it is of great value. Here we propose two different schemes to prepare multiphoton entangled states on a quantum photonic chip that are both based on the theory of entanglement on the graph. The first scheme is to construct graphs for multiphoton states by the network of spatially anti-bunching two-photon sources. The second one is to construct graphs by the linear beam-splitter network, which can generate W and Dicke states efficiently with simple structure. Both schemes can be scaled up in the photon number and can be reconfigured for different types of multiphoton states. This study supplies a systematic solution for the on-chip generation of multiphoton entangled states and will promote the practical development of multiphoton quantum technologies.