23-dB average isolation using a silicon photonic Mach-Zehnder modulator

Opt Express. 2020 Aug 31;28(18):26056-26066. doi: 10.1364/OE.392002.

Abstract

We demonstrate an optical time-gate isolator entirely fabricated on the silicon-on-insulator (SOI) platform based on a conventional traveling-wave Mach-Zehnder modulator (TW-MZM) design. The device achieves 18.2 dB (22.7 dB) time-averaged isolation when driven with 2.0-Vpp (7.1-Vpp) differential clock signals at 6.8 GHz and biased at null. Under these conditions, the isolator blocks backward light at all time regardless of driver amplitude, but produces periodic modulation in the forward direction. Moreover, we embed our isolator in a digital communication link and measure a signal-to-noise ratio (SNR) penalty of only 0.5 dB due to the isolator at 13.6 Gbaud PAM-4 data rate. Our device can be integrated in larger circuits to protect laser sources or mitigate interference.