On Viscous Flow in Glass-Forming Organic Liquids

Molecules. 2020 Sep 3;25(17):4029. doi: 10.3390/molecules25174029.

Abstract

The two-exponential Sheffield equation of viscosity η(T) = A1·T·[1 + A2·exp(Hm/RT)]·[1 + C·exp(Hd/RT)], where A1, A2, Hm, C, and Hm are material-specific constants, is used to analyze the viscous flows of two glass-forming organic materials-salol and α-phenyl-o-cresol. It is demonstrated that the viscosity equation can be simplified to a four-parameter version: η(T) = A·T·exp(Hm/RT)]·[1 + C·exp(Hd/RT)]. The Sheffield model gives a correct description of viscosity, with two exact Arrhenius-type asymptotes below and above the glass transition temperature, whereas near the Tg it gives practically the same results as well-known and widely used viscosity equations. It is revealed that the constants of the Sheffield equation are not universal for all temperature ranges and may need to be updated for very high temperatures, where changes occur in melt properties leading to modifications of A and Hm for both salol and α-phenyl-o-cresol.

Keywords: activation energy; glass transition temperature; glass-forming liquids; viscosity; viscous flow.

MeSH terms

  • Cresols / chemistry
  • Glass / chemistry*
  • Organic Chemicals / chemistry*
  • Rheology*
  • Salicylates / chemistry
  • Temperature
  • Viscosity

Substances

  • Cresols
  • Organic Chemicals
  • Salicylates
  • phenyl salicylate
  • cresol