Self-powered cardiovascular electronic devices and systems

Nat Rev Cardiol. 2021 Jan;18(1):7-21. doi: 10.1038/s41569-020-0426-4. Epub 2020 Sep 7.

Abstract

Cardiovascular electronic devices have enormous benefits for health and quality of life but the long-term operation of these implantable and wearable devices remains a huge challenge owing to the limited life of batteries, which increases the risk of device failure and causes uncertainty among patients. A possible approach to overcoming the challenge of limited battery life is to harvest energy from the body and its ambient environment, including biomechanical, solar, thermal and biochemical energy, so that the devices can be self-powered. This strategy could allow the development of advanced features for cardiovascular electronic devices, such as extended life, miniaturization to improve comfort and conformability, and functions that integrate with real-time data transmission, mobile data processing and smart power utilization. In this Review, we present an update on self-powered cardiovascular implantable electronic devices and wearable active sensors. We summarize the existing self-powered technologies and their fundamental features. We then review the current applications of self-powered electronic devices in the cardiovascular field, which have two main goals. The first is to harvest energy from the body as a sustainable power source for cardiovascular electronic devices, such as cardiac pacemakers. The second is to use self-powered devices with low power consumption and high performance as active sensors to monitor physiological signals (for example, for active endocardial monitoring). Finally, we present the current challenges and future perspectives for the field.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Cardiovascular Diseases* / diagnosis
  • Cardiovascular System*
  • Electric Power Supplies
  • Humans
  • Wearable Electronic Devices*