High phosphate actively induces cytotoxicity by rewiring pro-survival and pro-apoptotic signaling networks in HEK293 and HeLa cells

FASEB J. 2021 Jan;35(1):e20997. doi: 10.1096/fj.202000799RR. Epub 2020 Sep 6.

Abstract

Inorganic phosphate (Pi) is an essential nutrient for human health. Due to the changes in our dietary pattern, dietary Pi overload engenders systemic phosphotoxicity, including excessive Pi-related vascular calcification and chronic tissue injury. The molecular mechanisms of the seemingly distinct phenotypes remain elusive. In this study, we investigated Pi-mediated cellular response in HEK293 and HeLa cells. We found that abnormally high Pi directly mediates diverse cellular toxicity in a dose-dependent manner. Up to 10 mM extracellular Pi promotes cell proliferation by activating AKT signaling cascades and augmenting cell cycle progression. By introducing additional Pi, higher than the concentration of 40 mM, we observed significant cell damage caused by the interwoven Pi-related biological processes. Elevated Pi activates mitogen-activated protein kinase (MAPK) signaling, encompassing extracellular signal-regulated kinase 1/2 (ERK1/2), p38 and Jun amino-terminal kinase (JNK), which consequently potentiates Pi triggered lethal epithelial-mesenchymal transition (EMT). Synergistically, high Pi-caused endoplasmic reticulum (ER) stress also contributes to apparent apoptosis. To counteract, Pi-activated AKT signaling promotes cell survival by activating the mammalian target of rapamycin (mTOR) signaling and blocking ER stress. Pharmacologically or genetically abrogating Pi transport, the impact of high Pi-induced cytotoxicity could be reduced. Taken together, abnormally high extracellular Pi results in a broad spectrum of toxicity by rewiring complicated signaling networks that control cell growth, cell death, and homeostasis.

Keywords: EMT; ER stress; MAPK; apoptosis; cytotoxicity; phosphate.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis / drug effects*
  • Cell Survival / drug effects
  • Cytotoxins / pharmacology*
  • Dose-Response Relationship, Drug
  • Extracellular Signal-Regulated MAP Kinases / metabolism
  • HEK293 Cells
  • HeLa Cells
  • Humans
  • MAP Kinase Signaling System / drug effects*
  • Phosphates / pharmacology*
  • Proto-Oncogene Proteins c-akt / metabolism
  • TOR Serine-Threonine Kinases / metabolism

Substances

  • Cytotoxins
  • Phosphates
  • MTOR protein, human
  • Proto-Oncogene Proteins c-akt
  • TOR Serine-Threonine Kinases
  • Extracellular Signal-Regulated MAP Kinases