Biochar decreases methanogenic archaea abundance and methane emissions in a flooded paddy soil

Sci Total Environ. 2021 Jan 15:752:141958. doi: 10.1016/j.scitotenv.2020.141958. Epub 2020 Aug 25.

Abstract

Biochar addition can reduce methane (CH4) emissions from paddy soils while the mechanisms involved are not entirely clear. Here, we studied the effect of biochar addition on CH4 emissions, and the abundance and community composition of methanogens and methanotrophs over two rice cultivation seasons. The experiment had the following five treatments: control (CK), chemical fertilizer application only (BC0), and 0.5% (w/w) (BC1), 1% (BC2), and 2% of biochar applied with chemical fertilizers (BC3). The season-wide CH4 emissions were decreased (P < 0.05) by 22.2-95.7% in biochar application compared with BC0 in the two rice seasons (2017 and 2018). In 2017, biochar application decreased methanogenic archaea (mcrA) but increased methanotrophic bacteria (pmoA) abundances, and decreased the ratio of mcrA/pmoA, as compared with BC0 (P < 0.05). In 2018, the abundance of mcrA was lower in BC2 and BC3 than in BC0 (P < 0.05) but was not different between BC0 and BC1, and the abundance of pmoA was lower in BC1, BC2 and BC3 than in BC0 (P < 0.05). The CH4 emissions were positively related to abundances of the mcrA gene (P < 0.01) but not to that of the pmoA gene in two rice seasons. Rice grain yield was increased by 62.2-94.1% in biochar addition treatments compared with BC0 in the first year (P < 0.01) and by 29.9-37.6% in BC2 and BC3 compared with BC0 in the second year (P < 0.05). Biochar application decreased CH4 emissions by reducing methanogenic archaea abundance in the studied flooded paddy soil.

Keywords: Biochar application rate; Interannual variation; Methanogen; Methanotroph; Rice paddy.

MeSH terms

  • Archaea / genetics
  • Charcoal
  • Methane
  • Oryza*
  • Soil Microbiology
  • Soil*

Substances

  • Soil
  • biochar
  • Charcoal
  • Methane