The mycobiome in murine intestine is more perturbed by food arsenic exposure than in excreted feces

Sci Total Environ. 2021 Jan 20:753:141871. doi: 10.1016/j.scitotenv.2020.141871. Epub 2020 Aug 21.

Abstract

Arsenic is a global pollutant that can accumulate in rice and has been confirmed to disturb the gut microbiome. By contrast, the influence on the gut mycobiome is seldom concerned because fungi comprise a numerically small proportion of the whole gut microcommunity. To expand the detection of the mycobiome in different gut sections of mammals and investigate the influence of food arsenic on the gut mycobiome in the digestive tract, we treated mice with feeds containing different compositions of arsenic species (7.3% sodium arsenate, 72.7% sodium arsenite, 1.0% sodium monomethylarsonate, and 19.0% sodium dimethylarsinate) in rice at a total arsenic dose of 30 mg/kg. After 60 days of exposure, the feces of four different sites, the ileum, cecum, colon, and excreted feces, were collected and analyzed by internal transcribed spacer gene sequencing. Among the samples, the major fungal phyla were Ascomycota, Basidiomycota, and Zygomycota; the top 10 fungal genera were Aspergillus, Verticillium, Penicillium, Cladosporium, Alternaria, Fusarium, Ophiocordyceps, Trametes, Mucor, and Nigrospora. In control mice, along the murine digestive tract, the mycobial richness and composition were significantly changed; Aspergillus and Penicillium possessed the higher ability to be stabilized in the murine gut, and larger proportions of positive correlations were observed among the major fungi. After arsenic exposure, the fungal composition was more disturbed in the intestinal tract than in feces. Along the digestive tract, arsenic can trigger larger mycobial variations, and the sensitivities of major fungi to arsenic were changed. Thus, the murine intestinal spatial mycobiota are more perturbed than excreted fecal mycobiota after food arsenic exposure. Feces are insufficient to be selected as a representative of the gut mycobiota in arsenic exposure studies.

Keywords: Arsenic; Diversity; Intestinal; Mice; Mycobiome; Network analysis.

MeSH terms

  • Animals
  • Arsenic*
  • Feces
  • Fungi
  • Intestines
  • Mice
  • Mycobiome*
  • Trametes

Substances

  • Arsenic