Drug repurposing approach to fight COVID-19

Pharmacol Rep. 2020 Dec;72(6):1479-1508. doi: 10.1007/s43440-020-00155-6. Epub 2020 Sep 5.

Abstract

Currently, there are no treatment options available for the deadly contagious disease, coronavirus disease 2019 (COVID-19). Drug repurposing is a process of identifying new uses for approved or investigational drugs and it is considered as a very effective strategy for drug discovery as it involves less time and cost to find a therapeutic agent in comparison to the de novo drug discovery process. The present review will focus on the repurposing efficacy of the currently used drugs against COVID-19 and their mechanisms of action, pharmacokinetics, dosing, safety, and their future perspective. Relevant articles with experimental studies conducted in-silico, in-vitro, in-vivo, clinical trials in humans, case reports, and news archives were selected for the review. Number of drugs such as remdesivir, favipiravir, ribavirin, lopinavir, ritonavir, darunavir, arbidol, chloroquine, hydroxychloroquine, tocilizumab and interferons have shown inhibitory effects against the SARS-CoV2 in-vitro as well as in clinical conditions. These drugs either act through virus-related targets such as RNA genome, polypeptide packing and uptake pathways or target host-related pathways involving angiotensin-converting enzyme-2 (ACE2) receptors and inflammatory pathways. Using the basic knowledge of viral pathogenesis and pharmacodynamics of drugs as well as using computational tools, many drugs are currently in pipeline to be repurposed. In the current scenario, repositioning of the drugs could be considered the new avenue for the treatment of COVID-19.

Keywords: COVID-19; Coronavirus; Repurposing; SARS-CoV2.

Publication types

  • Review

MeSH terms

  • Animals
  • Antiviral Agents / pharmacology
  • Antiviral Agents / therapeutic use*
  • COVID-19 / virology
  • COVID-19 Drug Treatment*
  • Computer Simulation
  • Drug Discovery / methods
  • Drug Repositioning*
  • Humans
  • SARS-CoV-2 / drug effects
  • SARS-CoV-2 / pathogenicity

Substances

  • Antiviral Agents