Fatigue Prediction of Aluminum Alloys Considering Critical Plane Orientation under Complex Stress States

Materials (Basel). 2020 Sep 2;13(17):3877. doi: 10.3390/ma13173877.

Abstract

This publication is intended to present a new way of estimating the fatigue life of various construction materials. Carpinteri's proposal was modified by replacing the fatigue limits ratio with the value of the normal to shear stress ratio for a given number of cycles. In this study, the proposed criterion and calculation model was verified for the selected group of aluminium alloys. The purpose of the analysis of the experimental studies was to check the effectiveness of the proposed method of estimating fatigue life under the applied bending and torsional load conditions. The results of the fatigue calculations are presented in graphical form by means of diagrams showing the comparison of design and experimental strength. Before fatigue life was calculated, the critical plane orientation according to Carpinteri's model and the proposed model were determined. After analyzing the results of the comparison of design and experimental durability, it can be stated that the proposed fatigue life estimation algorithm gives satisfactory results for multiaxial cyclic loads.

Keywords: aluminium alloys; critical plane; fatigue life.