Heterogeneous Parahydrogen-Induced Polarization of Diethyl Ether for Magnetic Resonance Imaging Applications

Chemistry. 2021 Jan 18;27(4):1316-1322. doi: 10.1002/chem.202003638. Epub 2020 Dec 10.

Abstract

Magnetic resonance imaging (MRI) with the use of hyperpolarized gases as contrast agents provides valuable information on lungs structure and function. While the technology of 129 Xe hyperpolarization for clinical MRI research is well developed, it requires the expensive equipment for production and detection of hyperpolarized 129 Xe. Herein we present the 1 H hyperpolarization of diethyl ether vapor that can be imaged on any clinical MRI scanner. 1 H nuclear spin polarization of up to 1.3 % was achieved using heterogeneous hydrogenation of ethyl vinyl ether with parahydrogen over Rh/TiO2 catalyst. Liquefaction of diethyl ether vapor proceeds with partial preservation of hyperpolarization and prolongs its lifetime by ≈10 times. The proof-of-principle 2D 1 H MRI of hyperpolarized diethyl ether was demonstrated with 0.1×1.1 mm2 spatial and 120 ms temporal resolution. The long history of use of diethyl ether for anesthesia is expected to facilitate the clinical translation of the presented approach.

Keywords: NMR spectroscopy; diethyl ether; hyperpolarization; imaging agents; parahydrogen-induced polarization.