Dopamine-Decorated TiO2 Nanoparticles in Water: A QM/MM vs an MM Description

J Chem Theory Comput. 2020 Oct 13;16(10):6560-6574. doi: 10.1021/acs.jctc.0c00483. Epub 2020 Sep 17.

Abstract

Nanoparticle functionalization is a modern strategy in nanotechnology to build up devices for several applications. Modeling fully decorated metal oxide nanoparticles of realistic size (few nanometers) in an aqueous environment is a challenging task. In this work, we present a case study relevant for solar-light exploitation and for biomedical applications, i.e., a dopamine-functionalized TiO2 nanoparticle (1700 atoms) in bulk water, for which we have performed an extensive comparative investigation with both MM and QM/MM approaches of the structural properties and of the conformational dynamics. We have used a combined multiscale protocol for a more efficient exploration of the complex conformational space. On the basis of the results of this study and of some QM and experimental data, we have defined strengths and limitations of the existing force field parameters. Our findings will be useful for an improved modeling and simulation of many other similar hybrid bioinorganic nanosystems in an aqueous environment that are pivotal in a broad range of nanotechnological applications.

MeSH terms

  • Dopamine / chemistry*
  • Molecular Dynamics Simulation*
  • Nanoparticles / chemistry*
  • Quantum Theory*
  • Titanium / chemistry*
  • Water / chemistry

Substances

  • Water
  • titanium dioxide
  • Titanium
  • Dopamine