Identification of New Targets and the Virtual Screening of Lignans against Alzheimer's Disease

Oxid Med Cell Longev. 2020 Aug 15:2020:3098673. doi: 10.1155/2020/3098673. eCollection 2020.

Abstract

Alzheimer's disease (AD) is characterized by the progressive disturbance in cognition and affects approximately 36 million people, worldwide. However, the drugs used to treat this disease are only moderately effective and do not alter the course of the neurodegenerative process. This is because the pathogenesis of AD is mainly associated with oxidative stress, and current drugs only target two enzymes involved in neurotransmission. Therefore, the present study sought to identify potential multitarget compounds for enzymes that are directly or indirectly involved in the oxidative pathway, with minimal side effects, for AD treatment. A set of 159 lignans were submitted to studies of QSAR and molecular docking. A combined analysis was performed, based on ligand and structure, followed by the prediction of absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. The results showed that the combined analysis was able to select 139 potentially active and multitarget lignans targeting two or more enzymes, among them are c-Jun N-terminal kinase 3 (JNK-3), protein tyrosine phosphatase 1B (PTP1B), nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1), NADPH quinone oxidoreductase 1 (NQO1), phosphodiesterase 5 (PDE5), nuclear factor erythroid 2-related factor 2 (Nrf2), cycloxygenase 2 (COX-2), and inducible nitric oxide synthase (iNOS). The authors conclude that compounds (06) austrobailignan 6, (11) anolignan c, (19) 7-epi-virolin, (64) 6-[(2R,3R,4R,5R)-3,4-dimethyl-5-(3,4,5-trimethoxyphenyl)oxolan-2-yl]-4-methoxy-1,3-benzodioxole, (116) ococymosin, and (135) mappiodoinin b have probabilities that confer neuroprotection and antioxidant activity and represent potential alternative AD treatment drugs or prototypes for the development of new drugs with anti-AD properties.

MeSH terms

  • Algorithms
  • Alzheimer Disease / drug therapy*
  • Cyclic Nucleotide Phosphodiesterases, Type 5 / chemistry
  • Cyclic Nucleotide Phosphodiesterases, Type 5 / metabolism
  • Databases, Chemical
  • Drug Evaluation, Preclinical*
  • Humans
  • Hydrogen Bonding
  • Lignans / analysis*
  • Lignans / chemistry
  • Lignans / therapeutic use*
  • Molecular Docking Simulation
  • Protein Tyrosine Phosphatase, Non-Receptor Type 1 / chemistry
  • Protein Tyrosine Phosphatase, Non-Receptor Type 1 / metabolism
  • Quantitative Structure-Activity Relationship
  • ROC Curve
  • Thermodynamics
  • User-Computer Interface*

Substances

  • Lignans
  • Protein Tyrosine Phosphatase, Non-Receptor Type 1
  • Cyclic Nucleotide Phosphodiesterases, Type 5