Scrutinizing "Ligand Bands" via Polarized Single-Crystal X-ray Absorption Spectra of Copper(I) and Copper(II) Bis-2,2'-bipyridine Species

Inorg Chem. 2020 Sep 21;59(18):13416-13426. doi: 10.1021/acs.inorgchem.0c01800. Epub 2020 Sep 1.

Abstract

High-energy resolution fluorescence-detected Cu K-edge X-ray absorption spectroscopy (XAS) and single-crystal polarized XAS data are presented toward refining the assignments of bands assigned as excitations from Cu 1s to ligand-localized molecular orbitals. These have been previously dubbed "XAS-metal-ligand charge transfer" (XAS-MLCT) bands. Data are presented for a series of [Cu(xbpy)2]n+ complexes (xbpy = 2,2'-bipyridine (1n+), 4,4'-bisamino-2,2'-bipyridine (2n+), and 4,4'-dimethoxy-2,2'-bipyridine (3n+); n = 1 and 2). Dipolar dependencies of these "XAS-MLCT" bands in both Cu1+ and Cu2+ species lead to reassignment of these features as owing their intensities primarily to Cu 1s → Cu 4p excitations. The transition densities are Cu-localized, highlighting that XAS-MLCT features in Cu XAS spectra are not "charge transfer" transitions but rather quasi-atomic transitions. Although scrutiny of the acceptor orbitals supports assignment as Cu 1s → ligand π* transitions, it ultimately appears that while the ligand orbital energetics govern the positions of these bands the intensity is conferred through a small degree of metal 4p mixing into otherwise ligand-dominated acceptor molecular orbitals.