Neuroenergetics and "General Intelligence": A Systems Biology Perspective

J Intell. 2020 Aug 26;8(3):31. doi: 10.3390/jintelligence8030031.

Abstract

David C. Geary proposed the efficiency of mitochondrial processes, especially the production of energy, as the most fundamental biological mechanism contributing to individual differences in general intelligence (g). While the efficiency of mitochondrial functioning is undoubtedly an important and highly interesting factor, I outline several reasons why other main factors of neuroenergetics should not be neglected and why a systems biology perspective should be adopted. There are many advantages for research on intelligence to focus on individual differences in the capability of the overall brain metabolism system to produce the energy currency adenosine triphosphate (ATP): higher predictive strength than single mechanisms, diverse possibilities for experimental manipulation, measurement with existing techniques and answers to unresolved questions because of multiple realizability. Many of these aspects are especially important for research on developmental processes and the building and refining of brain networks for adaptation. Focusing too much on single parts of the system, like the efficiency of mitochondrial functioning, carries the danger of missing important information about the role of neuroenergetics in intelligence and valuable research opportunities.

Keywords: development of intelligence; energy metabolism; general intelligence; glucose regulation; mitochondria; network models; neuroenergetics; systems.