Hepatitis B envelope antigen increases Tregs by converting CD4+CD25- T cells into CD4+CD25+Foxp3+ Tregs

Exp Ther Med. 2020 Oct;20(4):3679-3686. doi: 10.3892/etm.2020.9107. Epub 2020 Aug 6.

Abstract

Hepatitis B virus (HBV) can establish a lifelong chronic infection in humans, leading to liver cirrhosis, liver failure and hepatocellular carcinoma. Patients with chronic hepatitis B (CHB) exhibit a weak virus-specific immune response. Regulatory T cells (Tregs) play a key role in regulating the immune response in patients with CHB. Patients with hepatitis B envelope antigen (HBeAg)-positive CHB harbored a higher percentage of Tregs in their peripheral blood than those with HBeAg-negative CHB. However, whether and how HBeAg manipulates the host immune system to increase the population of Tregs remains to be elucidated. The present manuscript describes a preliminary immunological study of HBeAg in a mouse model. Multiple potential CD4+ T cell epitopes in HBeAg were identified using Immune Epitope Database consensus binding prediction. It was demonstrated that HBeAg treatment increased the numbers of Tregs in mouse spleens in vitro and in vivo. Furthermore, it was indicated that the HBeAg-mediated increase in Tregs occurred through the conversion of CD4+CD25- T cells into CD4+CD25+Foxp3+ Tregs. Additionally, in vitro study illustrated that HBeAg stimulated murine spleen cells to produce increased transforming growth factor-β, which is required to enable HBeAg to convert T cells into Tregs. The results of the present study may provide further evidence of the effect of HBeAg on Tregs and aid in the development of novel HBeAg-based immunotherapy for CHB.

Keywords: HBV; HBeAg; chronic infection; immune regulation; regulatory T cell.