Methylene Bridging Effect on the Structures, Lewis Acidities and Optical Properties of Semi-planar Triarylboranes

Chemistry. 2021 Jan 21;27(5):1736-1743. doi: 10.1002/chem.202003319. Epub 2020 Dec 8.

Abstract

Three synthetic methods towards semi-planar triarylboranes with two aryl rings connected by a methylene bridge have been developed. The fine-tuning of their stereoelectronic properties and Lewis acidities was achieved by introducing fluorine, methyl, methoxy, n-butyl and phenyl groups either at their exocyclic or bridged aryl rings. X-ray diffraction analysis and quantum-chemical calculations provided quantitative information on the structural distortion experienced by the near planar hydro-boraanthracene skeleton during the association with Lewis bases such as NH3 and F- . Though the methylene bridge between the ortho-positions of two aryl rings of triarylboranes decreased the Gibbs free energies of complexation with small Lewis bases by less than 5 kJ mol-1 relative to the classical Lewis acid BAr3 , the steric shielding of the CH2 bridge is sufficient to avoid the formation of Lewis adducts with larger Lewis bases such as triarylphosphines. A newly synthesized spirocyclic amino-borane with a long intramolecular B-N bond that could be dissociated under thermal process, UV-irradiation, or acidic conditions might be a potential candidate in Lewis pairs catalysis.

Keywords: Lewis adducts; boron Lewis acidity; semi-planar triarylboranes; structure-property relationship.