Conversion of biochar to sulfonated solid acid catalysts for spiramycin hydrolysis: Insights into the sulfonation process

Environ Res. 2020 Sep:188:109887. doi: 10.1016/j.envres.2020.109887. Epub 2020 Jul 7.

Abstract

Biochar has been recognized as a sustainable platform for developing functional materials including catalysts. This work demonstrated a method of converting biochar to sulfonated solid-acid catalysts, and the effectiveness of the catalysts for spiramycin hydrolysis was examined. Two biochar samples (H and X) were sulfonated with three reagents (concentrated H2SO4, ClSO3H and p-toluenesulfonic acid (TsOH)) under hydrothermal, simple heating, ambient temperature, and CHCl3-assisted treatments. The effect of elemental compositions and structural characteristics of the feeding materials (H and X) on the acidic properties of the sulfonated biochars were investigated. The results showed that the sulfonation ability of the three reagents was in the order of ClSO3H > H2SO4 > TsOH, while hydrothermal treatment provided the highest total acidity, and largest amount of acidic groups (e.g., SO3H, COOH and Ar-OH). Biochar X with higher O/C and N contents, and less graphitic features showed superior acidic properties than biochar H under all the employed treatments. The hydrolytic efficiencies of the sulfonated biochars under 200 W of microwave irradiation increased with increasing total acidity, and the amount of SO3H and COOH groups. After sulfonation, the O/C of biochars increased, while H/C decreased, and the aromatic and graphitic features did not change. The electromagnetic energy absorbed by the sulfonated biochars did not notably contribute to spiramycin hydrolysis. Thus, this work demonstrated an effective and promising method for maneuvering biochar-based functional solid-acid catalysts for antibiotic remediation in contaminated water.

Keywords: Antibiotic remediation; Biochar; Solid acid catalysts; Spiramycin hydrolysis; Sulfonation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Catalysis
  • Charcoal
  • Hydrolysis
  • Spiramycin*

Substances

  • biochar
  • Charcoal
  • Spiramycin