Relationship between the radical-scavenging activity of selected flavonols and thermodynamic parameters calculated by density functional theory

Free Radic Res. 2020 Jul;54(7):535-539. doi: 10.1080/10715762.2020.1813887. Epub 2020 Sep 7.

Abstract

The relationship between radical-scavenging rate constants (k) in an aprotic medium and thermodynamic parameters calculated by density functional theory (DFT) was investigated for 7 flavonols, which are myricetin (Myr), quercetin (Que), morin (Mor), kaempferol (Kae), 2'-methylquercetin (2'-MeQue), 5'-methylquercetin (5'-MeQue), and 2',5'-dimethylquercetin (Me2Que). The k values were determined for the reaction between the flavonols and galvinoxyl radical used as a reactivity model of reactive oxygen species in deaerated acetonitrile at 298 K. The energy difference values (D HT, HT: hydrogen transfer) between the flavonols and the corresponding radicals, which equal to the relative O-H bond dissociation energies of the OH groups in the flavonols and ionisation potentials (IP) were calculated by DFT at the B3LYP/6-31++G(d) level with C-PCM solvation model parameterised for acetonitrile. Among the 7 flavonols used in this study, calculated IP values of 4 flavonols exhibited a linear correlation with log k, suggesting that the radical-scavenging reaction of these flavonols may proceed via an electron transfer as the rate determining step.

Keywords: Antioxidant; density functional theory; flavonol; radical; reaction mechanism.

MeSH terms

  • Antioxidants / chemistry
  • Benzhydryl Compounds / chemistry
  • Density Functional Theory
  • Flavonols / chemistry*
  • Free Radical Scavengers / chemistry*
  • Kinetics
  • Reactive Oxygen Species / chemistry
  • Structure-Activity Relationship
  • Thermodynamics

Substances

  • Antioxidants
  • Benzhydryl Compounds
  • Flavonols
  • Free Radical Scavengers
  • Reactive Oxygen Species
  • galvinoxyl