Detecting Mechanical Anisotropy of the Cornea Using Brillouin Microscopy

Transl Vis Sci Technol. 2020 Jun 24;9(7):26. doi: 10.1167/tvst.9.7.26. eCollection 2020 Jun.

Abstract

Purpose: The purpose of this study was to detect the mechanical anisotropy of the cornea using Brillouin microscopy along different perturbation directions.

Methods: Brillouin frequency shift of both whole globes (n = 10) and cornea punches (n = 10) were measured at different angles to the incident laser, thereby probing corneal longitudinal modulus of elasticity along different directions. Frequency shift of virgin (n = 26) versus cross-linked corneas (n = 15) over a large range of hydration conditions were compared in order to differentiate the contributions to Brillouin shift due to hydration from those due to stromal tissue.

Results: We detected mechanical anisotropy of corneas, with an average frequency shift increase of 53 MHz and 96 MHz when the instrument probed from 0° to 15° and 30° along the direction of the stromal fibers. Brillouin microscopy did not lose sensitivity to mechanical anisotropy up to 96% water content. We experimentally measured and theoretically modeled how mechanical changes independent of hydration affect frequency shift as a result of corneal cross-linking by isolating an approximately 100 MHz increase in frequency shift following a cross-linking procedure purely due to changes of stromal tissue mechanics.

Conclusions: Brillouin microscopy is sensitive to mechanical anisotropy of the stroma even in highly hydrated corneas. The agreement between model and experimental data suggested a quantitative relationship between Brillouin frequency shift, hydration state of the cornea, and stromal tissue stiffness.

Translational relevance: The protocol and model validated throughout this study offer a path for comprehensive measurements of corneal mechanics within the clinic; allowing for improved evaluation of the long-term mechanical efficacy of cross-linking procedures.

Keywords: Brillouin microscopy; corneal anisotropy; corneal cross-linking; keratoconus.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Anisotropy
  • Cornea*
  • Elasticity
  • Microscopy*