γ-Tocotrienol-Loaded Liposomes for Radioprotection from Hematopoietic Side Effects Caused by Radiotherapeutic Drugs

J Nucl Med. 2021 Apr;62(4):584-590. doi: 10.2967/jnumed.120.244681. Epub 2020 Aug 21.

Abstract

With the successful development and increased use of targeted radionuclide therapy for treating cancer comes the increased risk of radiation injury to bone marrow-both direct suppression and stochastic effects, leading to neoplasia. Herein, we report a novel radioprotector drug, a liposomal formulation of γ-tocotrienol (GT3), or GT3-Nano for short, to mitigate bone marrow radiation damage during targeted radionuclide therapy. Methods: GT3 was loaded into liposomes using passive loading. 64Cu-GT3-Nano and 3H-GT3-Nano were synthesized to study the in vivo biodistribution profile of the liposome and GT3 individually. The radioprotection efficacy of GT3-Nano was assessed after acute 137Cs whole-body irradiation at a sublethal (4 Gy), a lethal (9 Gy), or a single high-dose administration of 153Sm-ethylenediamine-N,N,N',N'-tetrakis(methylene phosphonic acid) (EDTMP). Flow cytometry and fluorescence microscopy were used to analyze hematopoietic cell population dynamics and the cellular site of GT3-Nano localization in the spleen and bone marrow, respectively. Results: Bone marrow uptake and retention (percentage injected dose per gram of tissue) at 24 h was 6.98 ± 2.34 for 64Cu-GT3-Nano and 7.44 ± 2.52 for 3H-GT3-Nano. GT3-Nano administered 24 h before or after 4 Gy of total-body irradiation (TBI) promoted rapid and complete hematopoietic recovery, whereas recovery of controls stalled at 60%. GT3-Nano demonstrated dose-dependent radioprotection, achieving 90% survival at 50 mg/kg against lethal 9-Gy TBI. Flow cytometry of the bone marrow indicated that progenitor bone marrow cells MPP2 and CMP were upregulated in GT3-Nano-treated mice. Immunohistochemistry showed that GT3-Nano accumulates in CD105-positive sinusoid epithelial cells. Conclusion: GT3-Nano is highly effective in mitigating the marrow-suppressive effects of sublethal and lethal TBI in mice. GT3-Nano can facilitate rapid recovery of hematopoietic components in mice treated with the endoradiotherapeutic agent 153Sm-EDTMP.

Keywords: bone marrow; liposome; radiation protection; γ-tocotrienol.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Chromans / administration & dosage*
  • Chromans / pharmacokinetics
  • Chromans / pharmacology*
  • Hematopoiesis / drug effects*
  • Hematopoiesis / radiation effects*
  • Liposomes
  • Mice
  • Radiation-Protective Agents / administration & dosage*
  • Radiation-Protective Agents / pharmacokinetics
  • Radiation-Protective Agents / pharmacology*
  • Radiotherapy / adverse effects*
  • Tissue Distribution
  • Vitamin E / administration & dosage
  • Vitamin E / analogs & derivatives*
  • Vitamin E / pharmacokinetics
  • Vitamin E / pharmacology

Substances

  • Chromans
  • Liposomes
  • Radiation-Protective Agents
  • Vitamin E
  • plastochromanol 8