Heteronuclear Dirhodium-Gold Anionic Complexes: Polymeric Chains and Discrete Units

Polymers (Basel). 2020 Aug 19;12(9):1868. doi: 10.3390/polym12091868.

Abstract

In this article, we report on the synthesis and characterization of the tetracarboxylatodirhodium(II) complexes [Rh2(μ-O2CCH2OMe)4(THF)2] (1) and [Rh2(μ-O2CC6H4-p-CMe3)4(OH2)2] (2) by metathesis reaction of [Rh2(μ-O2CMe)4] with the corresponding ligand acting also as the reaction solvent. The reaction of the corresponding tetracarboxylato precursor, [Rh2(μ-O2CR)4], with PPh4[Au(CN)2] at room temperature, yielded the one-dimensional polymers (PPh4)n[Rh2(μ-O2CR)4Au(CN)2]n (R = Me (3), CH2OMe (4), CH2OEt (5)) and the non-polymeric compounds (PPh4)2{Rh2(μ-O2CR)4[Au(CN)2]2} (R = CMe3 (6), C6H4-p-CMe3 (7)). The structural characterization of 1, 3·2CH2Cl2, 4·3CH2Cl2, 5, 6, and 7·2OCMe2 is also provided with a detailed description of their crystal structures and intermolecular interactions. The polymeric compounds 3·2CH2Cl2, 4·3CH2Cl2, and 5 show wavy chains with Rh-Au-Rh and Rh-N-C angles in the ranges 177.18°-178.69° and 163.0°-170.4°, respectively. A comparative study with related rhodium-silver complexes previously reported indicates no significant influence of the gold or silver atoms in the solid-state arrangement of these kinds of complexes.

Keywords: coordination polymers; dicyano-aurate complexes; dirhodium(II) compounds; heteronuclear; one-dimensional; rhodium-gold anionic chains.