Synthesis and Properties of Moisture-Cured Reactive Polyurethane Containing Castor Oil and Oxime Compounds

Polymers (Basel). 2020 Aug 17;12(8):1838. doi: 10.3390/polym12081838.

Abstract

Reactive polyurethane hot-melt resin (moisture-cured reactive polyurethane, PUR) could successfully be prepared from poly(tetramethylene ether) glycol (PTMG), castor oil and dimethylglyoxime (DMG) by one or two-stage synthesis. Fourier-transform infrared spectroscopy (FTIR) analysis showed that the synthesis resins belonged to NCO-capped castor oil-based polyurethane. The thermal behaviors of the cured PUR were analyzed by differential scanning calorimeter (DSC) and dynamic mechanical analyzer (DMA) instruments. The results showed that the cured resin provided remeltable properties under the dosages of 3 wt% DMG. Furthermore, the phenomenon could be proved by FTIR analysis according to the characteristic absorption peak of NCO groups after the cured resin was heated. Comparing different syntheses, the resin prepared by one-stage synthesis showed random distribution of DMG with PUR structure and that prepared by two-stage synthesis had distribution of DMG with branching structure in the prepolymer. The former obtained lower remeltable temperatures from 90 to 130 °C than the latter temperatures, which had temperatures above 125 °C. The tensile test showed that all of the PUR films exhibited typical tough behavior. Thus, the cured resin with DMG dosages of 3 wt% provided remeltable and mechanical properties at the same time. Overall, the crosslinking density and numbers of dynamic bonds should be kept in balance for preparation of remeltable PUR.

Keywords: castor oil; dimethylglyoxime; polyurethane; remeltable property; thermal property.