Aging-related mitochondrial alterations in bovine oocytes

Theriogenology. 2020 Nov:157:218-225. doi: 10.1016/j.theriogenology.2020.07.036. Epub 2020 Aug 1.

Abstract

Advanced maternal age is an emerging health problem which involves many functional and structural alterations in oocytes, and its study is relevant to design better approaches to improve the reproductive function in women of advanced age. A constraint to this type of studies is the limited amount of samples and the ethical problems of working with human gametes. This study aims to characterize the in vitro-induced age-related modifications in a bovine model, as well as to determine if this model is a reliable approach to study human aging. For this purpose, we have focused on aging-related alterations related to oocyte mitochondrial dysfunction, a key hallmark in aging. Morphological and bioenergetic in vitro-induced alterations in bovine oocytes were compared to an in vivo aged group and to the already reported information regarding humans and other animal models. Parameters monitored included ooplasmic volume; mitochondrial mass, distribution and aggregation, assessed by MitoTracker Green; mitochondrial activity, monitored by JC-1; and the mitochondrial levels of hydrogen peroxide (H2O2), quantified using MitoPY. Results show a significant decrease in oocyte cytoplasmic volume after both in vitro and in vivo aging (p < 0.001). Additionally, the levels of H2O2 increased significantly after in vitro and in vivo aging (p < 0.001) and mitochondrial aggregation patterns were significantly different after 30 h of in vitro maturation, with MII oocytes presenting small aggregates inside the cytoplasm, whereas aged oocytes had a lack of granularity (p < 0.001). In contrast, there were no differences between the different aging groups in terms of mitochondrial mass, distribution and activity. In conclusion, this in vitro approach of inducing aging-related alterations may be considered as a reliable approach to study the aging process in human female gametes, since it causes the same types of alterations in both species.

Keywords: Advanced maternal age; Bovine oocytes; Mitochondrial dysfunction; Oocyte aging.

MeSH terms

  • Aging*
  • Animals
  • Cattle
  • Cytoplasm
  • Female
  • Hydrogen Peroxide* / metabolism
  • Mitochondria*
  • Oocytes* / metabolism

Substances

  • Hydrogen Peroxide