DFT study the water-gas shift reaction over Cu/α-MoC surface

J Mol Model. 2020 Aug 19;26(9):237. doi: 10.1007/s00894-020-04502-5.

Abstract

Cu-based catalysts have been widely used for water-gas shift reaction (WGS, CO + H2O → CO2 + H2), and α-MoC support also shows the good performance for the reaction. Therefore, WGS reaction is systematically studied over Cu/α-MoC by using density functional theory (DFT). DFT result shows the strong metal-support interaction between Cu and α-MoC(111) support. As a result, an extensive tensile strain is introduced in the Cu lattice due to α-MoC support, and Cu 3d band center shifts to Fermi level. However, the strong metal-support interaction does not lead to significant polarization of the Cu/α-MoC surface due to the less charge transfer from Mo to Cu. For the WGS reaction, small Cu particles on α-MoC(111) are likely to facilitate the reaction. At the interface of Cu-α-MoC(111), oxygen stabilizes the dissociated *H, which is benefit of H2O scission. Then, the activity increases compared with Cu(111) surface. In general, small Cu particles on α-MoC support also have good activity for WGS reaction compared with Au deposition on α-MoC. Graphical abstract.

Keywords: Cu; DFT; Strong metal-support interaction; WGS; α-MoC.