An Estimation Approach for the Effective Elastic Modulus of Lightweight Bulk Filling Material with Compressible Inclusions and Imperfect Interfaces

Materials (Basel). 2020 Aug 12;13(16):3563. doi: 10.3390/ma13163563.

Abstract

In this study, an approach is developed to estimate the density and effective elastic modulus of a lightweight bulk filling material made up of expanded polystyrene (EPS) and cement-reinforced clay (matrix). First, a representative volume element (RVE) is composed of cell A (an EPS and matrix) and cell B (matrix only). Then, an elastic interface is introduced to describe the discontinuity of displacement at the interface between EPS beads and matrix. Third, an Eshelby compliance tensor is modified in cell A to include the effects of imperfect interface and the compressibility of EPS beads. Finally, the approach for the density and effective elastic modulus of the EPS beads mixed cement-reinforced clay is verified with experimental data. The compressibility ratio of lightweight clay is compared under different confining pressures and curing times. It is found that the imperfect interface has salient impacts on the effective elastic modulus with the increase of volume fraction of inclusions. The interface parameters (α and β) vary with curing time and confining pressure. At the same curing time, the parameter α is almost constant regardless of confining pressure but the parameter β changes with confining pressure. The compressibility ratio is smaller for longer curing time if the confining pressure is constant.

Keywords: density; effective elastic modulus; expended polystyrene beads; imperfect interface; lightweight material; mean field homogenization.