Epoxy graphene oxide from a simple photo-Fenton reaction and its hybrid with phytic acid for enhancing U(VI) capture

Sci Total Environ. 2020 Oct 10:738:140316. doi: 10.1016/j.scitotenv.2020.140316. Epub 2020 Jun 18.

Abstract

A novel approach to synthesize phytic acid (PA) functionalized graphene oxide (P-pFGO-7) treated by the photo-Fenton reaction has been designed, which has been used as an adsorbent for efficient capture of U(VI) from aqueous solution. The structure and morphology of P-pFGO-7 were characterized well. The adsorption property for P-pFGO-7 was comprehensively assessed by batch experiments, showing the high adsorption capacity (266.7 mg/g, at pH = 4.0, T = 298 K), fast adsorption kinetics (~10 min), good selectivity for U(VI) and Ln-An ions in various coexisting ions and excellent regeneration capacity. With the assistance of various characterization techniques and batch adsorption results, it is found that PA makes the most contribution to coordinate U(VI) heavily depending on the PO moiety. P-pFGO-7 could be regenerated by 0.1 mol/L Na2CO3 with ~95% desorption efficiency and reused well after five recycles. This present work provides a feasible route to modify graphene oxide and extend PA for potentially practical application in the removal of U(VI) from radioactive wastewater.

Keywords: Adsorption; Graphene oxide; Photo-Fenton oxidation; Phytic acid; Uranium.