Hybrid MPI-MRI System for Dual-Modal In Situ Cardiovascular Assessments of Real-Time 3D Blood Flow Quantification-A Pre-Clinical In Vivo Feasibility Investigation

IEEE Trans Med Imaging. 2020 Dec;39(12):4335-4345. doi: 10.1109/TMI.2020.3017160. Epub 2020 Nov 30.

Abstract

Non-invasive quantification of functional parameters of the cardiovascular system, in particular the heart, remains very challenging with current imaging techniques. This aspect is mainly due to the fact, that the spatio-temporal resolution of current imaging methods, such as Magnetic Resonance Imaging (MRI) or Positron Emission Tomography (PET), does not offer the desired data repetition rates in the context of real-time data acquisition and thus, can cause artifacts and misinterpretations in accelerated data acquisition approaches. We present a fast non-invasive and quantitative dual-modal in situ cardiovascular assessment using a hybrid imaging system which combines the new imaging modality Magnetic Particle Imaging (MPI) and MRI. This pre-clinical hybrid imaging system provides either a 0.5 T homogeneous B0 field for MRI or a 2.2 T/m gradient field featuring a Field-Free-Point for MPI. A comprehensive coil system allows in both imaging modes for spatial encoding, signal excitation and reception. In this work, 3-dimensional anatomical information acquired with MRI is combined with in situ sequentially acquired time-resolved 3D (i.e. 3D + t) MPI bolus tracking of superparamagnetic iron oxide nanoparticles. MPI data were acquired during a 21 [Formula: see text] (40 μ mol(Fe)/kgBW) bolus tail vein injection under free-breathing with an ungated and non-triggered MPI scan with a repetition rate of 46 volumes per seconds. We successfully determined quantitative hemodynamics as 3D + t velocity vector estimations of a beating rat's heart by analyzing 3 seconds of 3D + t MPI image data. The used hybrid system allows for MR-based MPI Field-of-View planning and cardiac cross-sectional anatomy analysis, precise co-registration of dual-modal datasets, as well as for MPI-based hemodynamic functional analysis using an optical flow technique. We present the first in-vivo results of a new methodology, allowing for fast, non-invasive, quantitative and in situ hybrid cardiovascular assessment, showing its potential for future clinical applications.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cross-Sectional Studies
  • Feasibility Studies
  • Hemodynamics
  • Magnetic Resonance Imaging
  • Multimodal Imaging*
  • Rats
  • Tomography, X-Ray Computed*