Unstable Invasion of Sedimenting Granular Suspensions

Phys Rev Lett. 2020 Jul 31;125(5):054501. doi: 10.1103/PhysRevLett.125.054501.

Abstract

We investigate the development of mobility inversion and fingering when a granular suspension is injected radially between horizontal parallel plates of a cell filled with a miscible fluid. While the suspension spreads uniformly when the suspension and the displaced fluid densities are exactly matched, even a small density difference is found to result in a dense granular front which develops fingers with angular spacing that increase with granular volume fraction and decrease with injection rate. We show that the timescale over which the instability develops is given by the volume fraction dependent settling timescale of the grains in the cell. We then show that the mobility inversion and the nonequilibrium Korteweg surface tension due to granular volume fraction gradients determine the number of fingers at the onset of the instability in these miscible suspensions.