Light-Induced Anisotropic Morphological Dynamics of Black Phosphorus Membranes Visualized by Dark-Field Ultrafast Electron Microscopy

ACS Nano. 2020 Sep 22;14(9):11383-11393. doi: 10.1021/acsnano.0c03644. Epub 2020 Aug 17.

Abstract

Black phosphorus (BP) is an elemental layered material with a strong in-plane anisotropic structure. This structure is accompanied by anisotropic optical, electrical, thermal, and mechanical properties. Despite interest in BP from both fundamental and technical aspects, investigation into the structural dynamics of BP caused by strain fields, which are prevalent for two-dimensional (2D) materials and tune the material physical properties, has been overlooked. Here, we report the morphological dynamics of photoexcited BP membranes observed using time-resolved diffractograms and dark-field images obtained via ultrafast electron microscopy. Aided by 4D reconstruction, we visualize the nonequilibrium bulging of thin BP membranes and reveal that the buckling transition is driven by impulsive thermal stress upon photoexcitation in real time. The bulging, buckling, and flattening (on strain release) showed anisotropic spatiotemporal behavior. Our observations offer insights into the fleeting morphology of anisotropic 2D matter and provide a glimpse into the mapping of transient, modulated physical properties upon impulsive excitation, as well as strain engineering at the nanoscale.

Keywords: anisotropy; black phosphorus (BP); nanoelectromechanical systems (NEMS); spatiotemporal imaging; structural dynamics; ultrafast electron microscopy (UEM).