RUNX2-modifying enzymes: therapeutic targets for bone diseases

Exp Mol Med. 2020 Aug;52(8):1178-1184. doi: 10.1038/s12276-020-0471-4. Epub 2020 Aug 13.

Abstract

RUNX2 is a master transcription factor of osteoblast differentiation. RUNX2 expression in the bone and osteogenic front of a suture is crucial for cranial suture closure and membranous bone morphogenesis. In this manner, the regulation of RUNX2 is precisely controlled by multiple posttranslational modifications (PTMs) mediated by the stepwise recruitment of multiple enzymes. Genetic defects in RUNX2 itself or in its PTM regulatory pathways result in craniofacial malformations. Haploinsufficiency in RUNX2 causes cleidocranial dysplasia (CCD), which is characterized by open fontanelle and hypoplastic clavicles. In contrast, gain-of-function mutations in FGFRs, which are known upstream stimulating signals of RUNX2 activity, cause craniosynostosis (CS) characterized by premature suture obliteration. The identification of these PTM cascades could suggest suitable drug targets for RUNX2 regulation. In this review, we will focus on the mechanism of RUNX2 regulation mediated by PTMs, such as phosphorylation, prolyl isomerization, acetylation, and ubiquitination, and we will summarize the therapeutics associated with each PTM enzyme for the treatment of congenital cranial suture anomalies.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Acetylation
  • Animals
  • Bone Diseases / therapy*
  • Core Binding Factor Alpha 1 Subunit / metabolism*
  • Enzymes / metabolism*
  • Humans
  • Molecular Targeted Therapy*
  • Protein Processing, Post-Translational

Substances

  • Core Binding Factor Alpha 1 Subunit
  • Enzymes