Simultaneous detection of ethambutol and pyrazinamide with IL@CoFe2O4NPs@MWCNTs fabricated glassy carbon electrode

Sci Rep. 2020 Aug 11;10(1):13563. doi: 10.1038/s41598-020-70263-z.

Abstract

For the first time, we report a novel electrochemical sensor for the simultaneous detection of ethambutol (ETB) and pyrazinamide (PZM) using 1-ethyl-3-methylimidazolium tetrafluoroborate ([Emim][BF4]) ionic liquid (IL) assimilated with multiwalled carbon nanotubes (MWCNTs) decorated cobalt ferrite nanoparticles (CoFe2O4NPs) on the surface of glassy carbon electrode (GCE). The surface morphological and electrochemical properties of the IL@CoFe2O4NPs@MWCNTs was characterized with X-ray diffraction (XRD), transmission electron microscope (TEM), thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR) and cyclic voltammetry (CV), differential pulse voltammetry (DPV) respectively. Moreover, the obtained results of CV demonstrated that the 9-folds enhancement in the electrochemical signals was achieved with IL@CoFe2O4NPs@MWCNTs@GCE compared to that of a bare GCE. Additionally, the simultaneous electrochemical detection of ETB and PZM was successfully accomplished using IL@CoFe2O4NPs@MWCNTs over a wide-range of concentration with good limit of detection (3S/m) of 0.0201 and 0.010 μM respectively. The findings of this study identify IL@CoFe2O4NPs@MWCNTs@GCE has promising abilities of simultaneous detection of ETB and PZM in pharmaceutical formulations.