Oligosilanyl-Bridged Biscarbazoles: Structure, Synthesis, and Spectroscopic Properties

ACS Omega. 2020 Jul 21;5(30):19181-19186. doi: 10.1021/acsomega.0c02559. eCollection 2020 Aug 4.

Abstract

Oligosilanyl-bridged systems are expected to give rise to unique optoelectronic properties because of σ-π conjugation between the Si-Si σ orbital and the aryl π orbital. Herein, we synthesized a small series of novel biscarbazoles bridged with permethylated oligosilanyl units (-[Si(CH3)2]n-, n = 1-4) and examined their spectroscopic properties in detail. In the target molecules BCzSin , n = 2-4, the efficient σ-π conjugation elevated the highest occupied molecular orbital energy level with no influence on the lowest unoccupied molecular orbital. In the solid state, the emission full width at half-maximum (fwhm) of all the compounds narrowed significantly, while the emission efficiency increased and the emission color of carbazole was retained. This research provided a very simple and general way of subtly manipulating the electronic properties of organic materials to construct an emissive color-retaining system for multifunctional applications.