Insecticide rotation scheme restores insecticide susceptibility in thiamethoxam-resistant field populations of Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), in Florida

Pest Manag Sci. 2021 Jan;77(1):464-473. doi: 10.1002/ps.6039. Epub 2020 Aug 28.

Abstract

Background: We investigated rotation using insecticides with multiple modes of action as a resistance management strategy for Asian citrus psyllid, Diaphorina citri, Kuwayama (Hemiptera: Liviidae), in Florida. The stability of thiamethoxam resistance was investigated in the laboratory by establishing populations of field-collected, resistant D. citri and rearing them under no insecticide exposure. Furthermore, recovery of susceptibility was investigated in the field by initiating rotation to insecticides in plots that previously were treated with consecutive thiamethoxam applications.

Results: The resistance ratio (RR) for thiamethoxam reached between 1266.29- and 1395.00-fold after three and four consecutive applications of thiamethoxam, respectively. However, the RR for thiamethoxam remained low (1.71-5.28-fold) under both rotations at both Lake Alfred and Wauchula. Thiamethoxam was cross-resistant with imidacloprid (RR site 1 = 1059.65-fold, RR site 2 = 1595.43-fold) and clothianidin (RR site 1 = 1798.78-fold, RR site 2 = 1270.57-fold) in the nonrotated treatment at both sites. There was very low cross-resistance to other insecticides with different modes of action. Both laboratory and field investigations indicated that susceptibility to thiamethoxam fully recovered after five D. citri generations. Expression of CYP4C67 was significantly increased in resistant populations.

Conclusion: Our results revealed that D. citri populations develop a high level of resistance following only three or four consecutive neonicotinoid sprays; this was associated with subsequent product failure. Our data suggest that metabolic detoxification by cytochrome P450s contributes to thiamethoxam resistance in D. citri. Overall, the investigation demonstrated that resistance to thiamethoxam can be managed readily in populations of D. citri by rotating modes of action.

Keywords: evolution; insecticide resistance; leaf-dip bioassay; resistance ratio; rotational model; susceptibility.

MeSH terms

  • Animals
  • Citrus*
  • Florida
  • Hemiptera*
  • Insecticides* / pharmacology
  • Thiamethoxam

Substances

  • Insecticides
  • Thiamethoxam