Synergistic Coupling of Ni Nanoparticles with Ni3 C Nanosheets for Highly Efficient Overall Water Splitting

Small. 2020 Sep;16(37):e2001642. doi: 10.1002/smll.202001642. Epub 2020 Aug 6.

Abstract

Exploring earth-abundant bifunctional electrocatalysts with high efficiency for water electrolysis is extremely demanding and challenging. Herein, density functional theory (DFT) predictions reveal that coupling Ni with Ni3 C can not only facilitate the oxygen evolution reaction (OER) kinetics, but also optimize the hydrogen adsorption and water adsorption energies. Experimentally, a facile strategy is designed to in situ fabricate Ni3 C nanosheets on carbon cloth (CC), and simultaneously couple with Ni nanoparticles, resulting in the formation of an integrated heterostructure catalyst (Ni-Ni3 C/CC). Benefiting from the superior intrinsic activity as well as the abundant active sites, the Ni-Ni3 C/CC electrode demonstrates excellent bifunctional electrocatalytic activities toward the OER and hydrogen evolution reaction (HER), which are superior to all the documented Ni3 C-based electrocatalysts in alkaline electrolytes. Specifically, the Ni-Ni3 C/CC catalyst exhibits the low overpotentials of only 299 mV at the current density of 20 mA cm-2 for the OER and 98 mV at 10 mA cm-2 for the HER in 1 m KOH. Furthermore, the bifunctional Ni-Ni3 C/CC catalyst can propel water electrolysis with excellent activity and nearly 100% faradic efficiency. This work highlights an easy approach for designing and constructing advanced nickel carbide-based catalysts with high activity based on the theoretical predictions.

Keywords: bifunctional electrocatalysts; heterostructures; metallic nickel; nickel carbide; overall water splitting; water electrolysis.