Allelopathy and its coevolutionary implications between native and non-native neighbors of invasive Cynara cardunculus L

Ecol Evol. 2020 Jun 28;10(14):7463-7475. doi: 10.1002/ece3.6472. eCollection 2020 Jul.

Abstract

Invasive plants apply new selection pressures on neighbor plant species by different means including allelopathy. Recent evidence shows allelopathy functions as remarkably influential mediator for invaders to be successful in their invaded range. However, few studies have determined whether native and non-native species co-occurring with invaders have evolved tolerance to allelopathy. In this study, we conducted germination and growth experiments to evaluate whether co-occurring native Juncus pallidus and non-native Lolium rigidum species may evolve tolerance to the allelochemicals induced by Cyanara cardunculus in Australian agricultural fields. The test species were germinated and grown in pots filled with collected invaded and uninvaded rhizosphere soil of C. cardunculus with and without activated carbon (AC). Additionally, a separate experiment was done to differentiate the direct effects of AC on the test species. The soil properties showed invaded rhizosphere soils had higher total phenolic and lower pH compared with uninvaded soils. We found significant reduction of germination percentage and seedling growth in terms of above- and belowground biomass, and maximum plant height and root length of native in the invaded rhizosphere soil of C. cardunculus, but little effect on non-native grass species. Even soil manipulated with AC showed no significant differences in the measured parameters of non-native except aboveground biomass. Taken together, the results indicate allelochemicals induced by C. cardunculus exert more suppressive effects on native than non-native linking the coevolved tolerance of those.

Keywords: Cyanara cardunculus L.; allelopathy; co‐occurring plants; evolved tolerance; invasive plant; plant invasion; rhizosphere.

Associated data

  • Dryad/10.5061/dryad.f7m0cfxsg