Constraining the atmospheric OCS budget from sulfur isotopes

Proc Natl Acad Sci U S A. 2020 Aug 25;117(34):20447-20452. doi: 10.1073/pnas.2007260117. Epub 2020 Aug 5.

Abstract

Carbonyl sulfide (OCS), the most abundant sulfur-containing gas in the atmosphere, is used as a proxy for photosynthesis rate estimation. However, a large missing source of atmospheric OCS has been inferred. Sulfur isotope measurements (34S/32S ratio and δ34S) on OCS are a feasible tool to distinguish OCS sources from oceanic and anthropogenic emissions. Here we present the latitudinal (north-south) observations of OCS concentration and [Formula: see text]S within Japan. The observed [Formula: see text]S of OCS of 9.7 to 14.5‰ reflects source and sink effects. Particularly in winter, latitudinal decreases in [Formula: see text]S values of OCS were found to be correlated with increases in OCS concentrations, resulting an intercept of (4.7 ± 0.8)‰ in the Keeling plot approach. This result implies the transport of anthropogenic OCS emissions from the Asian continent to the western Pacific by the Asian monsoon outflow. The estimated background [Formula: see text]S of OCS in eastern Asia is consistent with the [Formula: see text]S of OCS previously reported in Israel and the Canary Islands, suggesting that the background [Formula: see text]S of OCS in the Northern Hemisphere ranges from 12.0 to 13.5‰. Our constructed sulfur isotopic mass balance of OCS revealed that anthropogenic sources, not merely oceanic sources, account for much of the missing source of atmospheric OCS.

Keywords: carbonyl sulfide; gross primary production; stratospheric sulfate aerosols; sulfur isotope.

Publication types

  • Research Support, Non-U.S. Gov't