Optical detection of electron spin dynamics driven by fast variations of a magnetic field: a simple method to measure [Formula: see text], [Formula: see text], and [Formula: see text] in semiconductors

Sci Rep. 2020 Aug 4;10(1):13155. doi: 10.1038/s41598-020-70036-8.

Abstract

We develop a simple method for measuring the electron spin relaxation times [Formula: see text], [Formula: see text] and [Formula: see text] in semiconductors and demonstrate its exemplary application to n-type GaAs. Using an abrupt variation of the magnetic field acting on electron spins, we detect the spin evolution by measuring the Faraday rotation of a short laser pulse. Depending on the magnetic field orientation, this allows us to measure either the longitudinal spin relaxation time [Formula: see text] or the inhomogeneous transverse spin dephasing time [Formula: see text]. In order to determine the homogeneous spin coherence time [Formula: see text], we apply a pulse of an oscillating radiofrequency (rf) field resonant with the Larmor frequency and detect the subsequent decay of the spin precession. The amplitude of the rf-driven spin precession is significantly enhanced upon additional optical pumping along the magnetic field.