An electronic approach for the automation of angle-resolved spectroscopic measurements

Rev Sci Instrum. 2020 Jul 1;91(7):074706. doi: 10.1063/5.0010765.

Abstract

Angle-resolved light scattering techniques are powerful tools to obtain structural and spectroscopic information on the investigated sample by means of the study of the pattern of the angular distribution of scattered light. In this paper, we show the details of a new electronic system conceived to automate a Raman coherent backscattering setup, in which it is crucial to acquire several spectra at different angles in a wide spectral acquisition range. In this frame, we used this electrical circuit to trigger the signal edges between the charged-coupled device and the motorized nanorotator stage in our setup, carrying out a considerable quantity of measurements only with an initial input given by the operator and minimizing the supervision of the experiment and, therefore, the time invested by the user in it. By means of this system that can be easily integrated in the setup, we can perform distinct type of measurements by using different configurations of the components that make up the experimental setup.