Suppression tuning curves in a two-degrees-of-freedom nonlinear cochlear model

J Acoust Soc Am. 2020 Jul;148(1):EL8. doi: 10.1121/10.0001506.

Abstract

A two-degrees-of-freedom nonlinear cochlear model [Sisto, Shera, Altoè, and Moleti (2019). J. Acoust. Soc. Am. 146, 1685-1695] correctly predicts that the reticular lamina response is nonlinear over a wide basal region. Numerical simulations of suppression tuning curves agree with a recent experiment [Dewey, Applegate, and Oghalai (2019). J. Neurosci. 39, 1805-1816], supporting the idea that the strong susceptibility of the reticular lamina response to suppression by high-frequency tones does not imply that the total traveling wave energy builds-up in correspondingly basal regions. This happens because the reticular lamina is the lightest element of a coupled-oscillators system, only indirectly coupled to the differential pressure.

MeSH terms

  • Cochlea*
  • Nonlinear Dynamics*