Application of end-of-shift respirable crystalline silica monitoring to construction

J Occup Environ Hyg. 2020 Sep;17(9):416-425. doi: 10.1080/15459624.2020.1779275. Epub 2020 Aug 4.

Abstract

A pilot project was conducted to determine the effect of common construction dusts as interferences in a new portable end-of-shift (EoS), direct-on-filter (DoF) sampling and analysis method for respirable crystalline silica (RCS), in this case, quartz. Construction dusts were prepared from plaster, drywall, cement and brick by grinding, aerosolizing, and collecting respirable dust with high flow rate cyclones. Filters were loaded with different levels of commercial α-quartz powder Min-u-Sil 5, and different levels of interfering dusts, singly and in combination. Samples were analyzed by Fourier Transform Infrared Spectroscopy (FTIR). Good correlations were found between nominal quartz loading (0 µg, 25 µg, 50 µg, and 100 µg) adjusted for quartz in the interfering dust and FTIR absorbance alone and in the presence of all interfering dusts. The slopes of the correlations were similar whether the loading was quartz without interference, or with plaster, drywall, and cement dusts, regardless of quantity. The results show that (a) plaster and drywall dusts do not interfere substantially; (b) cement does not interfere, but a change in the intercept suggests an effect on the background absorbance of the filter; and (c) in addition to having a substantial quartz content, brick dust contains an additional material, probably a silicate mineral, which interferes with the quartz peak. Thus, the presence of cement leads to lower quartz values and brick leads to higher values, but overall, 83% of the quartz contents predicted from the calibration data agreed within 50% of the adjusted nominal loadings within the range 20-110 µg. This result is encouraging given the high levels of interfering dusts. Nine samples loaded with smaller amounts of all four dusts together gave results within 25% of the adjusted nominal loadings. A single mixture addition of the dusts to the filter gave tighter variance in results than sequential additions. Unexpectedly, the two Certified Reference Materials (CRMs) 1878a and 1878b, gave different results when used to calibrate XRD analysis of Min-u-Sil 5.

Keywords: Construction; FTIR spectroscopy; field analysis; quartz; respirable crystalline silica.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Air Filters
  • Air Pollutants, Occupational / analysis*
  • Construction Materials
  • Dust / analysis
  • Environmental Monitoring / methods*
  • Particulate Matter / analysis*
  • Pilot Projects
  • Quartz / analysis*
  • Spectroscopy, Fourier Transform Infrared / methods

Substances

  • Air Pollutants, Occupational
  • Dust
  • Particulate Matter
  • Quartz