Short-Lived α-Emitting Isotope ^{222}Np and the Stability of the N=126 Magic Shell

Phys Rev Lett. 2020 Jul 17;125(3):032502. doi: 10.1103/PhysRevLett.125.032502.

Abstract

A new, very short-lived neutron-deficient isotope ^{222}Np was produced in the complete-fusion reaction ^{187}Re(^{40}Ar,5n)^{222}Np, and observed at the gas-filled recoil separator SHANS. The new isotope ^{222}Np was identified by employing a recoil-α correlation measurement, and six α-decay chains were established for it. The decay properties of ^{222}Np with E_{α}=10016(33) keV and T_{1/2}=380_{-110}^{+260} ns were determined experimentally. The α-decay systematics of Np isotopes is improved by adding the new data for ^{222}Np, which validates the N=126 shell effect in Np isotopes. The evolution of the N=126 shell closure is discussed in the neutron-deficient nuclei up to Np within the framework of α-decay reduced width.