Lipid Scrambling Induced by Membrane-Active Substances

Biophys J. 2020 Aug 18;119(4):767-779. doi: 10.1016/j.bpj.2020.07.004. Epub 2020 Jul 14.

Abstract

The functional roles of the lipid asymmetry of biomembranes are attracting increasing attention. This study characterizes the activity of surfactants to induce transmembrane flip-flop of lipids and thus "scramble" this asymmetry. Detergent-induced lipid scrambling of liposomes mimicking the charge asymmetry of bacterial membranes with 20 mol % of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol in the outer leaflet only was quantified by ζ-potential measurements for octaethylene glycol dodecyl ether (C12EO8), octyl glucoside (OG), and dodecyl maltoside. Membrane leakage was separately measured by the fluorescence lifetime-based calcein leakage assay and the onset of the membrane-to-micelle transition by isothermal titration calorimetry. Partition coefficients and partial molar areas were obtained as well. For the quickly membrane-permeant C12EO8 and OG, leakage proceeds at a rather sharp threshold content in the membrane, which is well below the onset of solubilization and little dependent on incubation time; it is accompanied by fast lipid scrambling. However, unlike leakage, flip-flop is a relaxation process that speeds up gradually from taking weeks in the detergent-free membrane to minutes or less in the leaking membrane. Hence, after 24 h of incubation, 10 mol % of C12EO8 or 50 mol % of OG in the membrane suffice for virtually complete lipid scrambling, whereas leakage remains below 10% for up to 14 mol % of C12EO8 and 88 mol % of OG. There is thus a concentration window in which lipid scrambling proceeds without leakage. This implies that lipid scrambling must be considered a possible mode of action of antimicrobial peptides and other membrane-active drugs or biomolecules. A related, detergent-based protocol for scrambling the lipid asymmetry of liposomes and maybe cells without compromising their overall integrity would be a very valuable tool to study functions of lipid asymmetry.

MeSH terms

  • Calorimetry
  • Lipid Bilayers
  • Lipids*
  • Liposomes*
  • Micelles
  • Phosphatidylcholines

Substances

  • Lipid Bilayers
  • Lipids
  • Liposomes
  • Micelles
  • Phosphatidylcholines