Precision-based exercise as a new therapeutic option for children and adolescents with haematological malignancies

Sci Rep. 2020 Jul 30;10(1):12892. doi: 10.1038/s41598-020-69393-1.

Abstract

Children and adolescents with haematological malignancies (PedHM) are characterized by a severe loss of exercise ability during cancer treatment, lasting throughout their lives once healed and impacting their social inclusion prospects. The investigation of the effect of a precision-based exercise program on the connections between systems of the body in PedHM patients is the new frontier in clinical exercise physiology. This study is aimed at evaluating the effects of 11 weeks (3 times weekly) of combined training (cardiorespiratory, resistance, balance and flexibility) on the exercise intolerance in PedHM patients. Two-hundred twenty-six PedHM patients were recruited (47% F). High or medium frequency participation (HAd and MAd) was considered when a participant joined; > 65% or between 30% and < 64% of training sessions, respectively. The "up and down stairs'' test (TUDS), "6 min walking" test (6MWT), the "5 Repetition Maximum strength" leg extension and arm lateral raise test (5RM-LE and 5RM-ALR), flexibility (stand and reach), and balance (stabilometry), were performed and evaluated before and after training. The TUDS, the 5RM-LE and 5RM-ALR, and the flexibility exercises showed an increase in HAd and MAd groups (P < 0.05), while the 6MWT and balance tests showed improvement only in HAd group (P < 0.0001). These results support the ever-growing theory that, in the case of the treatment of PedHM, 'exercise is medicine' and it has the potential to increase the patient's chances of social inclusion.

Publication types

  • Clinical Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Child
  • Child, Preschool
  • Exercise Therapy*
  • Female
  • Hematologic Neoplasms / physiopathology*
  • Hematologic Neoplasms / therapy*
  • Humans
  • Male
  • Muscle Strength*
  • Physical Fitness*
  • Postural Balance*
  • Precision Medicine