New Electrospun ZnO:MoO3 Nanostructures: Preparation, Characterization and Photocatalytic Performance

Nanomaterials (Basel). 2020 Jul 28;10(8):1476. doi: 10.3390/nano10081476.

Abstract

New molybdenum trioxide-incorporated ZnO materials were prepared through the electrospinning method and then calcination at 500 °C, for 2 h. The obtained electrospun ZnO:MoO3 hybrid materials were characterized by X-ray diffraction, scanning and transmission electron microscopies, ultraviolet (UV)-diffuse reflectance, UV-visible (UV-vis) absorption, and photoluminescence techniques. It was observed that the presence of MoO3 as loading material in pure ZnO matrix induces a small blue shift in the absorption band maxima (from 382 to 371 nm) and the emission peaks are shifted to shorter wavelengths, as compared to pure ZnO. Also, a slight decrease in the optical band gap energy of ZnO:MoO3 was registered after MoO3 incorporation. The photocatalytic performance of pure ZnO and ZnO:MoO3 was assessed in the degradation of rhodamine B (RhB) dye with an initial concentration of 5 mg/L, under visible light irradiation. A doubling of the degradation efficiency of the ZnO:MoO3 sample (3.26% of the atomic molar ratio of Mo/Zn) as compared to pure ZnO was obtained. The values of the reaction rate constants were found to be 0.0480 h-1 for ZnO, and 0.1072 h-1 for ZnO:MoO3, respectively.

Keywords: molybdenum trioxide-incorporated ZnO; optical properties; photocatalytic activity; structural characterization.